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A qualitative numerical technique is presented for identifying chaotic states of a non-
linear one-sided constrained one-degree of freedom (1-d.o.f.) deterministic system under a
dynamic non-conservative load. Discrete wavelet analysis in its classic and packet versions
was used to search for the boundaries of chaotic and non-chaotic solutions. The results
obtained were verified by an analysis of the Lyapunov exponents of the investigated system.
On the basis of numerical tests, one can state that wavelet analysis may be a fast and
reliable tool suitable for searching for the boundaries of chaotic and non-chaotic solutions.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The search for accurate ways of describing real phenomena leads inevitably to non-linear
models. A mathematical description of the behaviour of such models, based on non-linear
mechanics is usually in the form of complex systems of partial differential equations.
Chaos is one of the phenomena based on a non-linear description [1–5]. The (numerical)
analysis of chaotic phenomena is one of the basic ways of investigating critical states of
non-linear models. The chaotic state of a system may be indicated by, for example, phase
portraits, time-history response, Fourier analysis, Poincar!ee maps, auto-correlation
analysis or bifurcation diagrams, but its existence is proved conclusively by a laborious,
time-consuming quantitative analysis of the system’s Lyapunov exponents [1–5].

One of the tools by which the characteristic features of a system’s chaotic states can be
identified is wavelet analysis of the system’s responses [6–11]. Because of the nature of the
base functions employed, this analysis is particularly suitable for the description of non-
stationary states and so can be an alternative to the above-mentioned qualitative
identification techniques.

The aim of this paper is to demonstrate the effectiveness of the discrete wavelet analysis
and packet wavelet analysis of a system’s response, ensuring fast qualitative identification
of the system’s chaotic states. This is done, using as an example, a non-linear analysis of a
system with one degree of freedom (1 d.o.f.) and one-sided viscoelastic constraints. The
1-d.o.f. system considered could be a model of the behaviour of dynamically loaded
cantilever structural elements with limited displacements and varying constraints.

Wavelet analysis is applied to many engineering problems such as the analysis of
different (mainly non-stationary) signals [12–17], the diagnosis of damage and cracks
[18–21], and the identification of design parameters [22–24] and the identification of
damping [25–28].
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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Until now wavelet analysis has seldom been used to analyze chaotic systems. It
was used to detect small-amplitude harmonic components in motions considered as
chaotic [29]. A continuous wavelet transform was used in the analysis of the statistical
measures of wavelet expansion coefficients in the Ueda variant of the Duffing oscillator
[30] and a harmonic wavelet transform and a Poincar!ee map were used to identify
the type of motions in a non-linear dynamical system [31]. A continuous wavelet
transform was used in the analysis of a non-linear system in the vicinity of its Hopf
bifurcation point [32] and the so-called cross-wavelet analysis was applied to the Duffing
oscillator [33].

In the present paper, a short introduction to wavelet and wavelet packet analysis is
given, an equation of the geometrically and physically non-linear motion of a dynamically
loaded 1-d.o.f. system with one-sided constraints is formulated and several numerical
analyses showing the effectiveness of the proposed qualitative approach to the
identification of its chaotic states are presented.

2. SHORT INTRODUCTION TO WAVELET AND WAVELET PACKET ANALYSIS
OF A SIGNAL

Wavelets cðtÞ; as the name suggests, are ‘‘small waves’’ having a limited range and
oscillatory character. Wavelets make up particular sets of base functions in a description
of discrete and irregular functions (signals) found in the response of real physical systems,
especially in chaotic systems. In contrast to Fourier bases, whose elements are simple
trigonometric functions with an infinite support, wavelets with their limited range and
generally fast disappearance make up bases located well in frequency and time t: Wavelet
function bases are formed by scaling (using parameter a) and shifting in time (using
parameter b) an initial wavelet (mother wavelet) cðat þ bÞ; leading to the so-called
scalable, hierarchical representation of a considered function or signal. As with discrete
Fourier and discrete short-time Fourier transforms, one has, for a ¼ 2�j and b ¼ k2�j

where k; s 2 Z; the discrete wavelet transform.
One can consider a signal to consist of a smooth part ðfjðtÞÞ; constituting the core of the

description, and a part (djðtÞ) containing information about the (usually small)
fluctuations of the signal. The distinction between the smooth part and the fluctuations
is determined by the resolution, that is, by the scale below which the fluctuation of a signal
cannot be discerned. The resolution level is labelled by an integer j: A more accurate
description of a signal (a description at a higher resolution, j þ 1; i.e., fjþ1ðtÞ) can be
obtained if fluctuations djðtÞ (which a scale defined as 2�j permits to be perceived) are
added to its lower-resolution; j; fjðtÞ description [8]. This can be represented as

fjþ1ðtÞ ¼ fjðtÞ þ djðtÞ: ð1Þ

By reducing the scale, an increasingly more accurate description of the analyzed signal is
obtained as

f ðtÞ ¼ fjðtÞ þ
X1

k¼j

dkðtÞ: ð2Þ

This approach to the description of the function spaces of square-integratable functions
(f ðtÞ 2 L2ðRÞ) can be interpreted as a search for a description of them in space
(Vjðf ðtÞ 2 VjÞ; supplemented with the details of the description in spaces fWkg
(djðtÞ 2 Wj). Spaces Vj and Wj are mutually orthogonal (Wj ? Vj). The so-called scaling
function, fðtÞ and the functions resulting from its shifts k form the basis ffjkðtÞg of space
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Vj; where fjk ¼ 2j=2fð2j t � kÞ: As is known, V0 � V1 and so each function in V0 can be
represented by a base of space V1: In particular, scaling function fðtÞ 2 V0 can be
expressed in the basis ff1kðtÞg as

fðtÞ ¼
X

k

hkf1kðtÞ ¼
ffiffiffi
2

p X

k

hkfð2t � kÞ: ð3Þ

Equation (3) is called a dilation equation and set of expansion coefficients fhkg is referred
to as a low-pass filter.

Space W0 constitutes an orthogonal supplement to space V0 (sometimes referred to as a
central space) which as a result becomes space V1 thus,

V1 ¼ V0  W0 ð4Þ

and so since wavelet cðt � kÞ 2 W0 and V0 � V1; one can represent cðtÞ as a superposition
of the basis functions in space V1 by

cðtÞ ¼
X

k

gkf1kðtÞ ¼
ffiffiffi
2

p X

k

gkfð2t � kÞ; ð5Þ

where the set of coefficients fgkg is called a high-pass filter. Equation (5) is called a wavelet
equation. The scaled versions of function cðtÞ constitute the basis of space Wj : fcjkðtÞ ¼
2j=2cð2j t � kÞg: Equations (3) and (5) are referred to as two-scale relations. The discrete
wavelet transform of f ðtÞ can be shown as the decomposition

f ðtÞ ¼
X

k

f
j

kfjkðtÞ þ
X1

l¼j

X

k

dl
kclkðtÞ; ð6Þ

where f
j

k ¼ hfjk; f i and d
j

k ¼ hcjk; f i: For the scale parameter in the form a ¼ 2�j ; the
hierarchical wavelet decomposition (6) produces signal components whose spectra form
the so-called consecutive octave bands.

In certain applications, for example in chaotic states, analysis, the wavelet decomposi-
tion may not be fine enough to meet the problem requirements. To solve this, one uses
continuous wavelet transformation substituting a smaller increment for the scale
parameter a or by applying wavelet packets.

A wavelet packet is a generalization of a wavelet in that each octave frequency band of
the wavelet spectrum is further subdivided into finer frequency bands by using the
two-scale relations repeatedly. The space V can be decomposed into a direct sum
of two orthogonal subspaces defined by their basis functions given by equations (3) and
(5). This splitting algorithm can be used to decompose W spaces as well. For example, if
one defines

w2ðtÞ ¼
ffiffiffi
2

p X

k

hkcð2t � kÞ; w3ðtÞ ¼
ffiffiffi
2

p X

k

gkcð2t � kÞ; ð7Þ

then fw2ðt � kÞg and fw3ðt � kÞg are orthonormal basis functions for the two subspaces
whose direct sum is W1:

In general, for n ¼ 0; 1; . . . one defines a sequence of functions

w2nðtÞ ¼
ffiffiffi
2

p X

k

hkwnð2t � kÞ; w2nþ1ðtÞ ¼
ffiffiffi
2

p X

k

gkwnð2t � kÞ: ð8Þ

So far, using the combination of ffð2j t � kÞg and fcð2j t � kÞg has been used to form a
basis for VJ ; and now one has a whole sequence of wnðtÞ at one’s disposal. Various
combinations of these and their dilations and translations can give rise to various bases for
the function space. One has a whole collection of orthonormal bases generated from
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fwnðtÞg called a ‘‘library of wavelet packet bases’’. The function of the form wnjk ¼
2j=2wnð2j t � kÞ is called a wavelet packet.

3. PROBLEM FORMULATION

Let one consider the vibration of a 1-d.o.f. system consisting of an elastically fixed,
infinitely rigid massless bar of length l; with a concentrated mass m whose position on the
bar is given by co-ordinate x (Figure 1). The system is assumed to be loaded with a non-
conservative dynamic force PðtÞ which acts in the direction specified by the follower
parameter aðtÞ: Bar rotation qðtÞ; which is the deflection of the bar from its vertical form,
was assumed as the problem’s generalized co-ordinate. The non-stress form of the
deflected bar is defined by imperfection q0: The rigidity of the elastic fixation of the bar is
defined by time-variable function kðtÞ and its viscous damping, by function cðtÞ: The
motion of the system is additionally limited by two elastic-damping one-sided constraints
whose rigidity, viscous damping and vertical and horizontal position are specified
respectively by functions ðklðtÞ; clðtÞ; hlðtÞ;DlðtÞÞ for the left-side spring ðlÞ and
ðkrðtÞ; crðtÞ; hrðtÞ;DrðtÞÞ for the right-side spring ðrÞ: If one considers the condition of
the system’s dynamic equilibrium as a zero sum of the moments of all the forces (including
the inertia forces) relative to the point of fixation of the bar and introduce non-
dimensional quantities x ¼ x=l; xl ¼ hl=l; xr ¼ hr=l; xDl ¼ Dl=l and xDr ¼ Dr=l specifying
the position of mass m and that of the left and right constraints, one easily deduces
(assuming that the problem is geometrically linear, i.e., qðtÞ ! 0) the equation of the
P(t)
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m
kr(t)
cr(t)

hr(t)

k1(t)

c1(t)

h1(t)

x

l

k(t)
q(t)

c(t)

�(t)q(t)

�
1
(t) �r(t)

�>(t)

Figure 1. Diagram of analyzed model.
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system’s motion as

mðxlÞ2 .qqðtÞ þ cðtÞ ’qqðtÞ þ crðtÞðxrlÞH½qðtÞðxrlÞ � xDrl� ’qqðtÞðxrlÞ
þ clðtÞðxlÞH½xDl l � qðtÞðxl lÞ� ’qqðtÞðxl lÞ þ kðtÞ½qðtÞ � q0ðtÞ�
þ krðtÞðxrlÞH½qðtÞðxrlÞ � xDrl�½qðtÞðxrlÞ � xDrl�
þ klðtÞðxl lÞH½xDl l � qðtÞðxl lÞ�½qðtÞðxl lÞ � xDrl� ¼ PðtÞqðtÞlZðtÞ; ð9Þ

where ZðtÞ ¼ ½1� aðtÞ� and differentiation with respect to time t is denoted by dots, and
Hð � Þ denotes the Heaviside function.

If the finite rotations qðtÞ are allowed, the equation of the geometrically non-linear
problem assumes the form

mðxlÞ2 .qqðtÞ þ cðtÞ ’qqðtÞ þ crðtÞðxrlÞH½tg qðtÞðxrlÞ � xDrl�
1

cos2 qðtÞ ’qqðtÞðxrlÞ

þ clðtÞðxl lÞH½xDl l � tg qðtÞðxl lÞ�
1

cos2 qðtÞ ’qqðtÞðxl lÞ þ kðtÞ½qðtÞ � q0ðtÞ�

þ krðtÞðxrlÞH½tg qðtÞðxrlÞ � xDrl�½tg qðtÞðxrlÞ � xDrl�
þ klðtÞðxl lÞH½xDl l � tg qðtÞðxl lÞ�½tg qðtÞðxl lÞ � xDl l� ¼ PðtÞl sin½qðtÞlZðtÞ�: ð10Þ

The one-sided constraints and arbitrary forms of the system’s rigidity functions cause
both equations (9) and (10) to describe physically non-linear problems.

4. NUMERICAL ANALYSIS

For a certain choice of parameters the investigated system, whether its behaviour may
or may not be described by equation (9) or (10), behaves chaotically, which can be
established unequivocally (quantitatively) by an analysis of its Lyapunov exponents.
Using as an example, a system loaded with a dynamic non-conservative force, an analysis
of its Lyapunov exponents for some follower parameters a will be made. Ranges of the
variability of parameter a at which the system enters chaotic states will be determined and
the system’s responses for these parameters will be subjected to wavelet analysis. Equation
(10) and the equations resulting from the linearization of it make up a mathematical model
of the system’s behaviour. At qðtÞ ! 0 the linearization generates a system description
represented by equation (9).

In the considered cases it is assumed that m ¼ l ¼ x ¼ 1; q0 ¼ 0; c ¼ cr ¼ cl ¼ 0�01;
k ¼ 10; kr ¼ kl ¼ 1000; xl ¼ xr ¼ 0�5; Dr ¼ �Dl ¼ 0�1; PðtÞ ¼ 5sinð3tÞ and the initial
deflection and velocity are qð0Þ ¼ 0�1and ’qqð0Þ ¼ 0�0 respectively. Analyzing (in a discrete
set of points) the effect of follower parameter a in the range a 2 ð�0�5; 2�5Þ; it is obvious
that at a40�0 and a52�0 one of the Lyapunov exponents is positive, which means that the
system is chaotic. A systematic search for the limits of the chaotic solutions shows that the
boundary close to zero is in the interval a 2 ð0�00; 0�02Þ and the boundary close to a ¼ 2�0
is in the interval a 2 1�98; 1�99ð Þ: The convergence diagrams for the Lyapunov exponents
in the vicinity of a ¼ 0�0 and 2�0 are shown, respectively, in Figures 2 and 3, where
exponent values and the number of analysis time steps are shown on the Y - and X -axes,
respectively. The time step is Dt ¼ 0�025 s: An analysis of the convergence of the
Lyapunov exponents for double the time confirmed the results shown in Figures 2 and 3.
The test proposed in reference is [1] used for estimating the relative/absolute convergence
of the Lyapunov exponents algorithms presented in references [34,35]. The oscillatory
character of the convergence plot of the Lyapunov spectrum is typical for some attractors
[36–38].
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Figure 2. Convergence plot of Lyapunov exponents at (a) a ¼ 0�0; (b) a ¼ 0�02; (c) a ¼ 0�04; and (d) a ¼ 0�1:
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Figure 3. Convergence plot of Lyapunov exponents at (a) a ¼ 1�9; (b) a ¼ 1�98; (c) a ¼ 1�99 and (d) a ¼ 2�0:
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The wavelet analysis is based on the deterministic system’s response (signal) in the form
of a discrete set of displacements qðtÞ of size 214 of equally spaced N time samples taken in
the first 2000 s of the system vibration. The adopted sampling rate corresponds to about 15
readings taken during the free vibration period of the investigated system. The values of
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Figure 4. Chaotic signal (a ¼ 0�0) wavelet expansion coefficients at different resolutions.
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data points that are padded at the boundaries are determined by the choice of the periodic
(qiþN ¼ qi) boundary condition. The Daubechies wavelet of the order of 12 was used in the
analysis of the signal [6]. Also other wavelets, i.e., the Shannon wavelet, the Mallat
wavelet, and the Haar wavelet, were used to analyze the signal [6,8,9,11]. The results of all
the analyses were found to be in agreement. In the case of the Haar wavelet, although the
symptoms of a transition to chaos were on the whole preserved, the well-known
weaknesses of the signal description based on this type of wavelet became apparent [6–9].
The time distributions of system response wavelet expansion coefficient values for a
chaotic state (a ¼ 0�0) and a non-chaotic state (a ¼ 0�1) at the particular signal perception
levels [8] are shown in Figures 4 and 5. The 11 sublists are plotted and stacked together.
The lowest level plot ( j ¼ 1) is the residual trend (f

j
k); the topmost ( j ¼ 11), the finest

details (d
j
k). The expansions are markedly different, particularly at higher resolutions, and

thus easily distinguishable. The analyzed states are practically indistinguishable in the time
domain as illustrated by fragments of the response of the system in the chaotic state
(a ¼ 0�0) (Figure 6(a)) and in the non-chaotic state (a ¼ 0�1) (Figure 6(b)), which are
almost identical except for the magnitude of amplitudes. In Figure 7 the differences in
power spectrum analysis for chaotic states (a ¼ 0�0 (see Figures 7(a) and 7(c) and a ¼
�0�05 (Figure 7(e)) and non-chaotic states (a ¼ 0�1 Figures 7(b) and 7(d), and a ¼ 0�15
(Figure 7(f)) are shown. The existing qualitative differences in the power spectrum are not
so sharp as the differences in the distribution of wavelet expansion coefficients for a ¼ 0�0
(Figure 4) and a ¼ 0�1 (Figure 5). For a ¼ �0�05 (Figure 7(e)) and a ¼ 0�15 (Figure 7(f))
these differences are evident and they permit to distinguish chaotic and non-chaotic states
uniequivically.

The differences between chaotic and non-chaotic states can be seen even more clearly by
applying wavelet packet signal analysis [6–8]. In wavelet decomposition one ignores the
high-frequency part and keeps splitting the low-frequency part. In wavelet packet
decomposition, one can also choose to split the high-frequency part into low- and high-
frequency parts. So in general, wavelet packet decomposition divides the frequency space
into various parts allowing better frequency localization of the signal. Wavelet packet
analysis (up to six decompositions, resulting in 64 levels of resolution) is applied here to
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Figure 5. Non-chaotic signal (a ¼ 0�1) wavelet expansion coefficients at different resolutions.
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Figure 6. Fragments of the response of the system qðtÞ at (a) a ¼ 0�0 and (b) a ¼ 0�1:
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signals in the vicinity of the second of the previously determined boundaries between non-
chaotic and chaotic states (Figure 3). Selected levels (identical for both states) of the
wavelet packet decomposition (based on Daubechies filter of order 12) of the signals are
shown in Figures 8 and 9. The shown resolution levels correspond to signal frequencies in
the range 0�0 –0�25Hz). There are marked differences in the distribution and magnitude of
the wavelet expansion coefficients. Examples of significant differences between non-
chaotic and chaotic signal wavelet packet analyses can also be easily found in other
frequency ranges. The duration of the search for the boundaries of chaotic and non-
chaotic solutions using wavelet analysis of the system’s response was two orders less time
consuming than the laborious analysis of its Lyapunov exponents.

If one defines the cumulative energy of the signal wavelet expansion as
Pn

i¼1 jcij2; where
jcij5jciþ1j and normalizes this energy to 1, then an analysis of the number of coefficients
that are significant from the energy point of view gives a representation of the character of
a particular response. If one plots signal energy as a function of the number of included
coefficients (ordered from the highest value in absolute value terms), then it becomes clear
that chaotic states are characterized by a larger number of significant wavelet expansion
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coefficients. This means that in order to keep the same level of signal energy in chaotic
states one must consider a significantly larger number of coefficients than the one for the
same energy level in a non-chaotic state (Figure 10). The wavelets and the assumed
boundary condition may cause local boundary disturbance in the wavelet coefficient
distribution. This disturbance (appearing only in less than 10 from among 16 384
coefficients) insignificantly influences the energy distribution.

In wavelet packet transformations, one can choose not to decompose a particular
subspace while decomposing others so that there may be choices for a signal
representation. As is usual in such cases one needs to choose from among all the
representations the one that represents the signal most efficiently. By ‘‘efficient’’ one means
that a signal can be represented by a small number of wavelet packets. The basis for the
decomposition is chosen such that the weight of the coefficients is concentrated on a small
number of wavelet packets and a large number of coefficients are close to zero. The
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Figure 11. Position of the best basis for the non-chaotic state (a ¼ 0�1).
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criterion generally used for choosing the best basis for a given signal is the minimum
entropy criterion [39]. For each set fvigof the decomposition coefficients of a signal for a
particular choice of the wavelet packet basis, one associates a non-negative quantity
�
P

i v2i =||v||
2log2ðv2i =||v||2Þ called entropy, where ||v||2 ¼

P
i v2i : Intuitively, the entropy

defined above gives a measure of how many effective components are needed to represent
the signal for a specific basis. The best basis is the one which produces the least entropy.
One can visualize how the frequency space is split or equivalently what basis functions are
chosen by plotting the best basis location. Figure 11 shows the location of the best basis
for the non-chaotic signal (a ¼ 0�1). The top row represents the original space. Each
decomposition splits each frequency space in the previous level into two subspaces. The
best basis is the combination of the basis functions from the shaded spaces. Figure 12
shows the location of the best basis for chaotic signal (a ¼ 0�0). As a rule for chaotic
signals the lowest row which corresponds to the lowest resolution level is chosen as the
best basis location.

There is full agreement between the results obtained (for presently used parameters)
from an analysis of the Lyapunov exponents of a geometrically linear system described by
equation (9) and those obtained using equation (10). A wavelet analysis of the response of
the system described by equation (9) preserves (similar to the above) the characteristic
qualitative features of the transition from non-chaotic to chaotic states. The differences
between the approach based on equation (9) and that based on equation (10) are visible at
lower scales, which corresponds to the higher frequency fractions (higher resolution levels)
of the signal components. The results of a wavelet packet analysis of signals that are
responses of the system described respectively by equation (9) (Figure 13(a)) and equation
(10) (Figure 13(b)) at a ¼ 2�0 are shown in Figure 13. The figure shows a range in which
differences occur}these are exclusively quantitative differences. The agreement between
the approach based on a geometrically linear description (9) and the approach which
permits finite displacements qðtÞ (10) was obtained through the specific choice of problem
parameters. If one assumes, for example, that m ¼ l ¼ x ¼ 1; q0 ¼ 0; c ¼ cr ¼ cl ¼ 0�01;
k ¼ 10; kr ¼ kl ¼ 1000; xl ¼ xr ¼ 0�5; Dr ¼ �Dl ¼ 0�3;PðtÞ ¼ sinð6tÞ; a ¼ 9�0 and the
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Figure 12. Position of the best basis for the chaotic state (a ¼ 0�0).
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initial deflection and velocity have values respectively qð0Þ ¼ 0�1and ’qqð0Þ ¼ 0�0; the
character of the system response may be radically different, both qualitatively and
quantitatively, depending on whether equation (9) or (10) is used. An analysis of the
Lyapunov exponents for these parameters shows that if equation (9) representing the
linear geometric approach is applied, the system appears to be chaotic (Figure 14(a)).
According to an analysis of the Lyapunov exponents based on equation (10) representing
the geometrically non-linear approach, the system does not exhibit any features of a
chaotic system (Figure 14(b)).

Figures 15–17 show results of a wavelet packet analysis of signals that are responses of
the system described respectively by equation (10) (Figure 15), linearized equation (10)
with four terms of expansion qðtÞ into a Taylor series (Figure 16) taken into account, and
linearized equation (10) with two terms of the expansion (Figure 17) taken into account.
The resolution levels in Figures 15–17 in each case correspond to the same frequency range
(0�576–0�896Hz). The results indicate that accurate mathematical models of the analyzed
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Figure 14. Convergence plot of Lyapunov exponents for system descriptions by (a) equation (9) and
(b) equation (10).
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Figure 15. Wavelet coefficients of signal of system described by equation (10).
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systems are needed, particularly if such a complex phenomenon as chaos is investigated.
Wavelet packet expansion coefficients indicate significant differences between signals but
the time traces of the signals are practically indistinguishable. Chaotic solutions have a
much larger number of (comparable in absolute value terms) wavelet expansion
coefficients and generally the coefficients are distributed over the whole duration of a
signal. As previously, the duration of the signal wavelet packet analysis was several times
shorter than that of the search for the system’s Lyapunov exponents.

5. CONCLUSIONS

A numerical technique, based on discrete signal wavelet analysis, for determining
chaotic states of a system has been presented. Using a non-linear 1-d.o.f. system with
viscoelastic one-sided constraints as an example, it was shown how a transition from a
non-chaotic state to a chaotic state manifests itself in the magnitude and distribution of the
system response wavelet expansion coefficients. The classic wavelet analysis algorithm and
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Figure 16. Wavelet coefficients of signal of system described by linearized equation (10) with four terms of
expansion qðtÞ into Taylor series.
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Figure 17. Wavelet coefficients of signal of system described by linearized equation (10) with two terms of
expansion qðtÞ into Taylor series.
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packet wavelet analysis were applied. In most cases Daubechies wavelets were used. The
conclusions emerging from the wavelet analysis of chaotic and non-chaotic states were
verified by an analysis of the system’s Lyapunov exponents. On the basis of a series of
numerical tests run to determine the system’s chaotic states the following conclusions can
be drawn:

1. wavelet analysis of a system’s response, particularly packet wavelet analysis, may
constitute an effective qualitative tool for differentiating between the system’s chaotic
and non-chaotic states;
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2. the duration of a wavelet analysis necessary to differentiate between a system’s chaotic
and non-chaotic states is at least by two orders shorter than that of a quantitative
analysis of the system’s Lyapunov exponents;

3. it is possible to differentiate between chaotic and non-chaotic states on the basis of a
wavelet analysis of the system’s finite, and even short-duration, responses;

4. a characteristic feature of a chaotic signal in wavelet analysis is the usually large
number of significant expansion coefficients which generally occur at the low- and high-
frequency levels of an analyzed signal;

5. the cumulative energy of a signal may constitute a good tool for identifying its chaotic
states}chaotic states are characterized by a large number of comparable (in absolute
value terms) expansion coefficients;

6. the best basis location in wavelet packet analysis can serve to distinguish analyzed
signals}for chaotic signals, almost exclusively the lowest resolution level is chosen
when using minimum entropy criterion;

7. attempts at simplifying mathematical models of systems in which chaos may occur lead,
as a rule, to false conclusions about its state and therefore they are inadmissible, as
proven conclusively by the wavelet analysis.

Wavelet analysis can be an alternative for different qualitative numerical techniques of
identification of chaos, which though similar to these techniques it does not always
produce final, equivocal qualification of investigated signals.
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